1 Python for Data Science 🐍

Master Python programming for machine learning, data analysis, and scientific computing.

1.1 Core Python Skills

1.1.1 Python Fundamentals

  • Data types and structures
  • Control flow and functions
  • Object-oriented programming
  • Error handling and debugging

1.1.2 Essential Libraries

  • NumPy - Numerical computing and arrays
  • Pandas - Data manipulation and analysis
  • Matplotlib & Seaborn - Data visualization
  • Scikit-learn - Machine learning toolkit

1.1.3 Data Science Workflow

  1. Data Collection - APIs, web scraping, databases
  2. Data Cleaning - Handling missing values, outliers
  3. Exploratory Data Analysis - Statistical summaries, visualization
  4. Feature Engineering - Creating and selecting features
  5. Model Building - Training and evaluation
  6. Deployment - Production-ready solutions

1.1.4 Advanced Python

  • Jupyter Notebooks - Interactive development
  • Virtual environments - Project management
  • Git version control - Collaboration
  • Testing and documentation - Best practices

1.2 Practical Examples

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
 
# Load and explore data
data = pd.read_csv('dataset.csv')
print(data.head())
print(data.info())
 
# Prepare features and target
X = data.drop('target', axis=1)
y = data['target']
 
# Split data
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)
 
# Train model
model = LinearRegression()
model.fit(X_train, y_train)
 
# Evaluate
score = model.score(X_test, y_test)
print(f"Model R² score: {score:.3f}")

Code your way to machine learning mastery with Python.

0 items under this folder.