1 Python for Data Science 🐍
Master Python programming for machine learning, data analysis, and scientific computing.
1.1 Core Python Skills
1.1.1 Python Fundamentals
- Data types and structures
- Control flow and functions
- Object-oriented programming
- Error handling and debugging
1.1.2 Essential Libraries
- NumPy - Numerical computing and arrays
- Pandas - Data manipulation and analysis
- Matplotlib & Seaborn - Data visualization
- Scikit-learn - Machine learning toolkit
1.1.3 Data Science Workflow
- Data Collection - APIs, web scraping, databases
- Data Cleaning - Handling missing values, outliers
- Exploratory Data Analysis - Statistical summaries, visualization
- Feature Engineering - Creating and selecting features
- Model Building - Training and evaluation
- Deployment - Production-ready solutions
1.1.4 Advanced Python
- Jupyter Notebooks - Interactive development
- Virtual environments - Project management
- Git version control - Collaboration
- Testing and documentation - Best practices
1.2 Practical Examples
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# Load and explore data
data = pd.read_csv('dataset.csv')
print(data.head())
print(data.info())
# Prepare features and target
X = data.drop('target', axis=1)
y = data['target']
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Train model
model = LinearRegression()
model.fit(X_train, y_train)
# Evaluate
score = model.score(X_test, y_test)
print(f"Model R² score: {score:.3f}")Code your way to machine learning mastery with Python.